Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Methyl 6-deoxy-6-iodo-a-D-galactoside

# Shivali A. Gulab,<sup>a</sup> Janice M. H. Cheng,<sup>b,c</sup> Mattie S. M. Timmer,<sup>b</sup> Bridget L. Stocker<sup>b</sup> and Graeme J. Gainsford<sup>a</sup>\*

<sup>a</sup>Carbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, <sup>b</sup>School of Chemical and Physical Sciences, Victoria University of Welllington, PO Box 600, Wellington, New Zealand, and <sup>c</sup>Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand Correspondence e-mail: g.gainsford@irl.cri.nz

Received 2 June 2010; accepted 14 June 2010

Key indicators: single-crystal X-ray study; T = 111 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.021; wR factor = 0.050; data-to-parameter ratio = 33.3.

In the crystal of the title compound,  $C_7H_{13}IO_5$ , the molecules are linked by  $O-H\cdots O$  hydrogen bonds, which build linkages around one screw axis of the cell. These C(5) and C(6) packing motifs expand to  $R_2^2(10)$  and  $C_2^2(11)$  motifs and are similar to those found for closely related compounds. The galactoside ring has a  ${}^{1}C_4$  chair conformation.

#### **Related literature**

For the synthetic details, see Dangerfield *et al.* (2009); Stocker *et al.* (2010). For related structures, see Sikorski *et al.* (2009), Robertson & Sheldrick (1965). For ring conformations see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein *et al.* (1995).



#### **Experimental**

Crystal data

 $\begin{array}{l} C_7 {\rm H_{13}IO_5} \\ M_r = 304.08 \\ {\rm Orthorhombic}, \ P2_1 2_1 2_1 \\ a = 5.7745 \ (2) \ {\rm \AA} \\ b = 7.9055 \ (3) \ {\rm \AA} \\ c = 22.1835 \ (7) \ {\rm \AA} \end{array}$ 

#### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (Blessing, 1995)  $T_{min} = 0.523, T_{max} = 0.747$   $V = 1012.68 (6) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 3.15 mm^{-1} T = 111 K 0.51 \times 0.30 \times 0.02 mm

30359 measured reflections 4062 independent reflections 3930 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.033$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.021 & \Delta\rho_{\rm max} = 1.45 \ {\rm e} \ {\rm \AA}^{-3} \\ wR(F^2) &= 0.050 & \Delta\rho_{\rm min} = -0.78 \ {\rm e} \ {\rm \AA}^{-3} \\ S &= 1.06 & {\rm Absolute \ structure: \ Flack \ (1983),} \\ 4062 \ {\rm reflections} & 1653 \ {\rm Friedel \ pairs} \\ 122 \ {\rm parameters} & {\rm Flack \ parameter: \ 0.002 \ (13)} \\ \\ H-atom \ parameters \ constrained & \\ \end{split}$$

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $O2-H2O\cdots O3^{i}$       | 0.84 | 1.90                    | 2.7407 (15)  | 175                                  |
| $O3-H3O\cdots O4^{i}$       | 0.84 | 2.01                    | 2.8310 (16)  | 166                                  |
| $O4-H4O\cdots O2^{ii}$      | 0.84 | 1.94                    | 2.7529 (15)  | 163                                  |
|                             |      |                         |              |                                      |

Symmetry codes: (i) -x + 2,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* and *SADABS* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997), *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and *PLATON*.

This work was supported by a New Zealand Foundation for Research Science and Technology contract [No. C08X0701] (SAG & GJG), the Health Research Council of New Zealand (MSMT) and the Cancer Society of New Zealand (MSMT & BLS). We thank Dr J. Waikara of the University of Canterbury, New Zealand, for her assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5062).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dangerfield, E. M., Timmer, M. S. M. & Stocker, B. L. (2009). Org. Lett. 11, 535–538.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Robertson, J. H. & Sheldrick, B. (1965). Acta Cryst. 19, 820-826.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sikorski, A., Tuwalska, D., Matjasik, B. & Liberek, B. (2009). *Carbohydr. Res.* **344**, 830–833.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stocker, B. L., Dangerfield, E. M., Win-Mason, A. L., Haslett, G. W. & Timmer, M. S. M. (2010). *Eur. J. Org. Chem.* 9, 1615–1637.

supplementary materials

Acta Cryst. (2010). E66, 01724 [doi:10.1107/S1600536810022786]

## Methyl 6-deoxy-6-iodo-*a*-D-galactoside

## S. A. Gulab, J. M. H. Cheng, M. S. M. Timmer, B. L. Stocker and G. J. Gainsford

#### Comment

Alkyl iodoglycosides such as the title compound (I) are versatile synthetic intermediates for the introduction of a wide array of functional groups, *e.g.* amines, ethers and esters, onto a carbohydrate scaffold. In addition, the chemical transformation of iodoglycosides have led to the synthesis of a wide array of biologically important molecules (Stocker *et al.*, 2010; Dangerfield *et al.*, 2009).

The asymmetric unit of the title compound (I) contains one independent methyl 6-deoxy-6-iodo- $\alpha$ -D-galactoside molecule (Fig. 1). The galactoside ring (C1–C5,O5) has a  ${}^{1}C_{4}$  chair conformation with Q 0.5902 (14) Å,  $\theta \& \varphi 3.36$  (15) & 279 (2)° respectively (Cremer & Pople, 1975) similar to that of the corresponding glucopyranoside 0.563 (5) Å, 4.8 (5)° & 310 (5)° (BOSLEB, Sikorski *et al.*, 2009). The absolute configurations with C1(*R*), C2(*R*), C3(S), C4(*R*), C5(S) are consistent with that expected from the synthesis.

The reported data herein (see experimental) is for the default "conventional" model: isotropic hydrogen atoms riding on their parent atoms  $R[F^2>2\sigma(F^2)]$  (R1), 0.0214, with a total of 122 variables. For interest, a "fully refined" model was used with isotropic hydrogen atoms and anisotropic non-hydrogen atoms giving R1 0.0211,  $wR(F^2)$  (wR2) 0.0482 for all 4062 data, using 170 variables. These coordinates are available from the designated author. The su values for the non-hydrogen atoms are similar for both models (0.0017–0.0023 Å), and no significant changes are found between the structural details of the two models. As an aside, we note the dominance of the iodine scattering seen in the refinement of a model with the iodine given anisotropic, and the non-hydrogen atoms isotropic, thermal parameters with the same restrained riding H atoms giving R1, wR2 of 0.0277, 0.0618 respectively for just 62 variables!

Lattice binding is provided by O—H···O hydrogen bonds (Table 1), which build linkages around the b screw axis of the cell (Figure 2). This binding is notably similar to that observed for the bromohydrin analogue (MGALBH, Robertson & Sheldrick, 1965), and the corresponding glucopyranoside (BOSLEB). The basic motif building blocks (Bernstein *et al.*, 1995) are of C(6) & C(5) types, which combine to give  ${}^{2}R_{2}(10)$  and  ${}^{2}C_{2}(11)$  motifs. Minor packing differences are noted with the BOSLEB structure, which has similar cell dimensions, with two, rather than one C(6) motif, an additional C–H···O interaction and a different  ${}^{2}R_{2}(10)$  motif.

#### **Experimental**

Synthetic details are given in Dangerfield *et al.* (2009). The title compound was recrystallized from a solution of 10% methanol in ethyl acetate

### Refinement

One reflection (0,0,2) affected by the backstop and two clearly outlier reflections ( $\Delta F^2/\sigma(F^2)>5$ ) were removed from the refinment.

The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with  $U_{iso}(H) = 1.5U_{eq}(C)$ , but were allowed to rotate freely about the adjacent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary) or 0.99 (methylene) Å and O—H distances of 0.84 Å and with  $U_{iso}(H) = 1.5U_{eq}(C,O)$  (see Comment text).

#### **Figures**



Fig. 1. Asymmetric unit contents of (I) (Farrugia, 1997) at the 30% thermal ellipsoid level.



Fig. 2. A packing view (Mercury 2.3, Macrae *et al.* (2008)) of the cell highlighting major hydrogen bonds (dotted). Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z (ii) 2 - x, 1/2 + y, 1/2 - z.

### Methyl 6-deoxy-6-iodo-α-D-galactoside

| Crystal data                                   |                                                       |
|------------------------------------------------|-------------------------------------------------------|
| C <sub>7</sub> H <sub>13</sub> IO <sub>5</sub> | F(000) = 592                                          |
| $M_r = 304.08$                                 | $D_{\rm x} = 1.994 {\rm ~Mg~m}^{-3}$                  |
| Orthorhombic, $P2_12_12_1$                     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab                         | Cell parameters from 9870 reflections                 |
| a = 5.7745 (2) Å                               | $\theta = 2.6 - 34.2^{\circ}$                         |
| b = 7.9055 (3) Å                               | $\mu = 3.15 \text{ mm}^{-1}$                          |
| c = 22.1835 (7) Å                              | <i>T</i> = 111 K                                      |
| $V = 1012.68 (6) \text{ Å}^3$                  | Plate, colourless                                     |
| Z = 4                                          | $0.51 \times 0.30 \times 0.02 \text{ mm}$             |
|                                                |                                                       |
|                                                |                                                       |

#### Data collection

| Bruker APEXII CCD<br>diffractometer      | 4062 independent reflections           |
|------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube | 3930 reflections with $I > 2\sigma(I)$ |
| graphite                                 | $R_{\rm int} = 0.033$                  |

Detector resolution: 8.333 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (Blessing, 1995)  $T_{\text{min}} = 0.523, T_{\text{max}} = 0.747$ 30359 measured reflections

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                                |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.021$                                | H-atom parameters constrained                                                                       |
| $wR(F^2) = 0.050$                                              | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0236P)^{2} + 0.4353P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| <i>S</i> = 1.06                                                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                 |
| 4062 reflections                                               | $\Delta \rho_{max} = 1.45 \text{ e} \text{ Å}^{-3}$                                                 |
| 122 parameters                                                 | $\Delta \rho_{min} = -0.78 \text{ e } \text{\AA}^{-3}$                                              |
| 0 restraints                                                   | Absolute structure: Flack (1983), 1653 Friedel pairs                                                |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.002 (13)                                                                         |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\theta_{\text{max}} = 35.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ 

 $h = -8 \rightarrow 9$ 

 $k = -12 \rightarrow 11$ 

 $l = -33 \rightarrow 33$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | У             | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|---------------|--------------|-------------------------------|
| I1  | 0.40872 (2)  | 0.478714 (16) | 0.504464 (5) | 0.02898 (4)                   |
| 01  | 0.5838 (2)   | 0.12645 (13)  | 0.34021 (5)  | 0.01598 (19)                  |
| O2  | 0.67433 (18) | 0.21293 (14)  | 0.22048 (5)  | 0.01352 (19)                  |
| H2O | 0.7581       | 0.1333        | 0.2328       | 0.020*                        |
| O3  | 1.03501 (17) | 0.45621 (14)  | 0.24533 (5)  | 0.01504 (19)                  |
| H3O | 1.0745       | 0.3781        | 0.2218       | 0.023*                        |
| O4  | 0.77547 (18) | 0.67940 (13)  | 0.31887 (6)  | 0.01447 (19)                  |
| H4O | 0.6341       | 0.6700        | 0.3106       | 0.022*                        |
| 05  | 0.47929 (18) | 0.40652 (14)  | 0.36225 (5)  | 0.01431 (19)                  |
| C1  | 0.4969 (2)   | 0.27912 (17)  | 0.31726 (7)  | 0.0122 (2)                    |
| H1  | 0.3391       | 0.2579        | 0.3003       | 0.018*                        |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| C2  | 0.6547 (2) | 0.33786 (17) | 0.26630 (7) | 0.0107 (2) |
|-----|------------|--------------|-------------|------------|
| H2  | 0.5829     | 0.4406       | 0.2478      | 0.016*     |
| C3  | 0.8900 (2) | 0.38930 (17) | 0.29162 (7) | 0.0118 (2) |
| Н3  | 0.9664     | 0.2872       | 0.3093      | 0.018*     |
| C4  | 0.8602 (2) | 0.52225 (19) | 0.34128 (6) | 0.0131 (2) |
| H4  | 1.0147     | 0.5426       | 0.3603      | 0.020*     |
| C5  | 0.6977 (2) | 0.44721 (18) | 0.38928 (7) | 0.0145 (2) |
| H5  | 0.7687     | 0.3423       | 0.4064      | 0.022*     |
| C6  | 0.6533 (3) | 0.5722 (2)   | 0.43929 (8) | 0.0239 (3) |
| H6A | 0.5936     | 0.6788       | 0.4217      | 0.036*     |
| H6B | 0.8013     | 0.5980       | 0.4599      | 0.036*     |
| C7  | 0.4228 (3) | 0.0461 (2)   | 0.38037 (8) | 0.0239 (3) |
| H7A | 0.4069     | 0.1141       | 0.4171      | 0.036*     |
| H7B | 0.4798     | -0.0668      | 0.3909      | 0.036*     |
| H7C | 0.2717     | 0.0362       | 0.3606      | 0.036*     |

# Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|-------------|-------------|-----------------|-------------|-------------|-------------|
| I1 | 0.03654 (6) | 0.02910 (6) | 0.02130 (5)     | 0.00409 (4) | 0.01094 (4) | 0.00063 (4) |
| O1 | 0.0168 (4)  | 0.0098 (4)  | 0.0213 (5)      | -0.0006 (4) | 0.0006 (4)  | 0.0029 (3)  |
| O2 | 0.0113 (4)  | 0.0111 (4)  | 0.0182 (5)      | 0.0009 (3)  | -0.0005 (4) | -0.0027 (4) |
| O3 | 0.0118 (4)  | 0.0134 (4)  | 0.0199 (5)      | -0.0024 (3) | 0.0043 (3)  | -0.0023 (4) |
| O4 | 0.0124 (4)  | 0.0092 (4)  | 0.0218 (5)      | -0.0001 (3) | -0.0002 (4) | 0.0013 (4)  |
| O5 | 0.0124 (4)  | 0.0133 (5)  | 0.0172 (5)      | 0.0013 (3)  | 0.0022 (4)  | -0.0012 (4) |
| C1 | 0.0096 (5)  | 0.0103 (5)  | 0.0168 (6)      | 0.0000 (4)  | 0.0004 (4)  | 0.0003 (5)  |
| C2 | 0.0079 (4)  | 0.0101 (5)  | 0.0141 (6)      | -0.0001 (4) | -0.0002 (4) | -0.0007 (4) |
| C3 | 0.0081 (5)  | 0.0109 (5)  | 0.0163 (6)      | -0.0009 (4) | 0.0005 (4)  | -0.0001 (4) |
| C4 | 0.0119 (5)  | 0.0107 (5)  | 0.0167 (6)      | -0.0003 (4) | -0.0016 (4) | 0.0008 (5)  |
| C5 | 0.0165 (6)  | 0.0123 (6)  | 0.0149 (6)      | -0.0004 (5) | -0.0009 (5) | 0.0002 (5)  |
| C6 | 0.0341 (8)  | 0.0179 (7)  | 0.0197 (8)      | -0.0040 (6) | 0.0073 (6)  | -0.0047 (6) |
| C7 | 0.0311 (8)  | 0.0190 (7)  | 0.0218 (7)      | -0.0062 (7) | 0.0037 (6)  | 0.0055 (5)  |

# Geometric parameters (Å, °)

| I1—C6  | 2.1521 (18) | C2—C3  | 1.5252 (18) |
|--------|-------------|--------|-------------|
| O1—C1  | 1.4027 (17) | С2—Н2  | 1.0000      |
| O1—C7  | 1.436 (2)   | C3—C4  | 1.532 (2)   |
| O2—C2  | 1.4219 (18) | С3—Н3  | 1.0000      |
| O2—H2O | 0.8400      | C4—C5  | 1.538 (2)   |
| O3—C3  | 1.4268 (17) | C4—H4  | 1.0000      |
| O3—H3O | 0.8400      | C5—C6  | 1.508 (2)   |
| O4—C4  | 1.4248 (17) | С5—Н5  | 1.0000      |
| O4—H4O | 0.8400      | С6—Н6А | 0.9900      |
| O5—C1  | 1.4217 (18) | С6—Н6В | 0.9900      |
| O5—C5  | 1.4332 (18) | С7—Н7А | 0.9800      |
| C1—C2  | 1.524 (2)   | С7—Н7В | 0.9800      |
| C1—H1  | 1.0000      | С7—Н7С | 0.9800      |

| C1—O1—C7    | 111.98 (12)  | O4—C4—C5    | 111.62 (11)  |
|-------------|--------------|-------------|--------------|
| С2—О2—Н2О   | 109.5        | C3—C4—C5    | 107.55 (11)  |
| С3—О3—НЗО   | 109.5        | O4—C4—H4    | 108.3        |
| C4—O4—H4O   | 109.5        | C3—C4—H4    | 108.3        |
| C1—O5—C5    | 112.93 (11)  | С5—С4—Н4    | 108.3        |
| O1—C1—O5    | 112.36 (12)  | O5—C5—C6    | 107.77 (12)  |
| O1—C1—C2    | 108.51 (11)  | O5—C5—C4    | 109.50 (11)  |
| O5—C1—C2    | 110.34 (11)  | C6—C5—C4    | 111.12 (12)  |
| O1—C1—H1    | 108.5        | O5—C5—H5    | 109.5        |
| O5—C1—H1    | 108.5        | С6—С5—Н5    | 109.5        |
| C2—C1—H1    | 108.5        | С4—С5—Н5    | 109.5        |
| O2—C2—C1    | 111.48 (11)  | C5—C6—I1    | 112.39 (11)  |
| O2—C2—C3    | 112.18 (11)  | С5—С6—Н6А   | 109.1        |
| C1—C2—C3    | 109.92 (11)  | I1—C6—H6A   | 109.1        |
| O2—C2—H2    | 107.7        | С5—С6—Н6В   | 109.1        |
| С1—С2—Н2    | 107.7        | I1—C6—H6B   | 109.1        |
| С3—С2—Н2    | 107.7        | Н6А—С6—Н6В  | 107.9        |
| O3—C3—C2    | 110.89 (12)  | O1—C7—H7A   | 109.5        |
| O3—C3—C4    | 109.21 (11)  | O1—C7—H7B   | 109.5        |
| C2—C3—C4    | 110.34 (10)  | H7A—C7—H7B  | 109.5        |
| О3—С3—Н3    | 108.8        | O1—C7—H7C   | 109.5        |
| С2—С3—Н3    | 108.8        | H7A—C7—H7C  | 109.5        |
| С4—С3—Н3    | 108.8        | H7B—C7—H7C  | 109.5        |
| O4—C4—C3    | 112.69 (11)  |             |              |
| C7—O1—C1—O5 | 68.74 (15)   | O3—C3—C4—O4 | 54.99 (14)   |
| C7—O1—C1—C2 | -168.99 (12) | C2—C3—C4—O4 | -67.15 (14)  |
| C5—O5—C1—O1 | 60.32 (15)   | O3—C3—C4—C5 | 178.43 (11)  |
| C5—O5—C1—C2 | -60.91 (15)  | C2—C3—C4—C5 | 56.30 (14)   |
| O1—C1—C2—O2 | 56.83 (14)   | C1—O5—C5—C6 | -175.45 (12) |
| O5—C1—C2—O2 | -179.68 (11) | C1—O5—C5—C4 | 63.56 (15)   |
| O1—C1—C2—C3 | -68.21 (14)  | O4—C4—C5—O5 | 64.63 (14)   |
| O5—C1—C2—C3 | 55.28 (14)   | C3—C4—C5—O5 | -59.47 (14)  |
| O2—C2—C3—O3 | 59.55 (14)   | O4—C4—C5—C6 | -54.31 (16)  |
| C1—C2—C3—O3 | -175.82 (11) | C3—C4—C5—C6 | -178.41 (13) |
| O2—C2—C3—C4 | -179.31 (11) | O5—C5—C6—I1 | 56.19 (15)   |
| C1—C2—C3—C4 | -54.68 (14)  | C4—C5—C6—I1 | 176.16 (10)  |

# Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|---------------------------|-------------|-------|--------------|---------|
| O2—H2O···O3 <sup>i</sup>  | 0.84        | 1.90  | 2.7407 (15)  | 175     |
| O3—H3O···O4 <sup>i</sup>  | 0.84        | 2.01  | 2.8310 (16)  | 166     |
| O4—H4O···O2 <sup>ii</sup> | 0.84        | 1.94  | 2.7529 (15)  | 163     |

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+1/2.







